New Zealand Diploma in Engineering (Mechanical) (Level 6)

As part of the government’s Targeted Training and Apprenticeships Fund (TTAF) to rebuild New Zealand's economy, this programme is now free^. For terms and conditions, more information, and other programmes covered by this scheme, click here.

Due to high demand, we recommend applying early.

Programme highlights

Get qualified to work as a professional engineering technician – an area critical to the economy in New Zealand and around the world. 

Learn the hands-on skills to build and repair machines. From refrigerators to industrial equipment, you'll learn how to work with the most complex machines. 

This qualification meets New Zealand and international benchmarks for engineering technicians. Graduates can work at a technician level as outlined by the Dublin Accord (International Engineering Alliance, 2002).

Flexible study option

Key facts

Start Month(s) February, July
Study Location(s) MIT Otara
(MIT TechPark from late 2020)
Level 6
Domestic fees Free^
Youth Guarantee (fees-free*) Not available
Programme Code NZ2612
Duration

Two years (full-time), part-time length will vary, but the qualification should be completed within ten years of starting

Study Method Full-time, Part-time
Credits 240
International Fees NZD$23,700 (approx.) per year
Māori and Pasifika Trades Training Scholarship (fees-free*) Not available
Qualification New Zealand Diploma

Entry requirements

Applicants must meet the following entry requirements:

Academic

NCEA Level 2,

  • Including a minimum of 10 literacy credits at Level 1 or above (for those who achieved NCEA Level 2 before 2013);

And 

  • A minimum total of 48 credits at level 2 in four subjects including at least 12 credits in mathematics (preferably achievement standards in algebra , calculus or trigonometry);

Or

  • Equivalent qualifications (e.g. International Baccalaureate or Cambridge);

Or

  • Equivalent credits from appropriate trades training and/or demonstrated skills and experience.

English Language Entry Requirements

In addition to meeting the minimum entry criteria, those applicants for whom English is a second language (including International students) must meet the IELTS overall language requirement: Overall Band Score (Academic) of 6.0 IELTS, with no individual score less than 5.5, or equivalent.

Other Entry Requirements

Applicants must be physically capable of completing the practical aspects of the programme, by being able to work effectively, efficiently and safely.

Although not part of the entry requirements, applicants will attend an interview as part of the process of assisting them to select the right specialisation.

Successful applicants will be accepted in order of application. The above attributes will be assessed through an interview process to  which applicants may bring family and/or whānau support.

Applicants who do not meet the entry requirements will be counselled to an appropriate Foundation programme.

Provisional entry

Students who have attained the age of 20 years and do not hold the minimum entry requirements for a programme will be eligible to be enrolled as a student where their previous educational, work or life experience indicates they have a reasonable likelihood of success. Students who have not attained the age of 20 years and do not hold the required minimum entry requirements for a programme may also be eligible to enrol in exceptional circumstances. Such decisions will be made by the Director/Head of School.

International students

Test your English level to help you plan.

Take our free online English test to get a basic indication of your English level. This will help you understand what programmes you can apply for and what preparation you may require before you start your programme of study.

Need IELTS?

Book your British Council IELTS test with us.

You will complete your test in one day, plus get free online tuition to help you succeed. We offer paper-based or computer-delivered IELTS. Choose computer-delivered IELTS and get your results in 3-5 days.

Career opportunities

Mechanical engineering and mechanical services cover an extensive range of occupations and industries. Positions can include engineering technicians, design engineers, plant engineers and managers.

The analytical, problem solving and project management skills gained through mechanical engineering training can also be transferred to many other occupations and provide a great platform for careers in business, management and design.

Programme structure

You will need to complete five compulsory courses and 11 additional courses related to this strand (240 credits):
Compulsory courses:

Level 4

141.417 Engineering Fundamentals (15 credits)

NZBED course code: DE4101
The aim is to introduce the basic fundamentals of a range of engineering disciplines.

The learning outcomes on successful completion of this course are the student should be able to:

  • Demonstrate an understanding of, and apply, the fundamentals of statics, dynamics and mechanical energy concepts.
  • Evaluate direct stress and strain, and derive elastic properties from tensile test results.
  • Demonstrate an understanding of the engineering properties of fluids and apply the fundamentals of hydrostatics.
  • Demonstrate an understanding of electrical voltage, current and resistance and explain the difference between AC and DC.
  • Demonstrate awareness of the New Zealand Electricity system and describe some of its safety features.
  • Demonstrate an understanding of heat energy and transfer; temperature and humidity of the air.

141.418 Engineering Mathematics 1 (15 credits)

NZBED course code: DE4102
The aim is to develop mathematical skills, concepts and understanding in order to perform calculations and solve problems within engineering contexts.

The learning outcomes on successful completion of this course are the student should be able to:

  • Manipulate and solve algebraic expressions and equations.
  • Solve, manipulate and apply mathematical functions, including the application of graphs where appropriate.
  • Apply the rules and principles of trigonometry using both degree and radian measure.
  • Demonstrate knowledge of differentiation and integration techniques and apply them to solve engineering problems.
  • Demonstrate knowledge and application of one of the following:
    • 5.1 Complex numbers, logic expressions and numbers OR
    • 5.2 Basic statistical concepts and techniques.

523.413 Technical Literacy (15 credits)

NZBED course code: DE4103
The aim is to develop technical research skills along with oral, written, graphical and interpersonal communication skills.

The learning outcomes on successful completion of this course are the student should be able to:

  • Utilise information obtained from physical or web-based resources in technical problem solving and presentations.
  • Prepare and deliver an oral presentation on a technical subject.
  • Communicate ideas and technical findings in a written format.
  • Create and use pictorial sketches and pictorial/orthographic drawings to current drawing standards as a communication technique to present ideas and data.
  • Demonstrate interpersonal communication skills to develop project Outcomes.

Level 6

115.610 Engineering Management (15 credits)

NZBED course code: DE6101
The aim is to develop the knowledge and skills required to administer and manage projects effectively in a specific discipline of engineering.

The learning outcomes on successful completion of this course are the student should be able to:

  • Demonstrate an understanding of, and apply, the fundamentals of project planning and project management.
  • Prepare and evaluate cost estimates, tender documentation and contract documentation.
  • Administer and supervise contracts in accordance with the relevant Standards and/or Codes of Practice.
  • Critically evaluate professional practice principles and their application to an engineering environment.

115.616 Engineering Project (Mechanical) (15 credits)

NZBED course code: DE6102
Pre-requisite: 523.413 Technical Literacy, 243.422 Engineering CAD and three level 5 ENG courses, or equivalent.

The aim is to apply knowledge and problem-solving skills to plan and complete an engineering project relevant to the discipline strand studied (civil, mechanical, electrical or electronics) to accepted practice and standards from a given specification.

The learning outcomes on successful completion of this course are the student should be able to:

  • Develop preliminary design(s), based on a given specification, for an engineering project relevant to their discipline strand. (Civil, Mechanical, Electrical or Electronics)
  • Develop a plan or design parameters considering functionality, safety, environmental, cultural and ethical issues.
  • Undertake well-defined planning and produce as project output.
  • Produce supporting documentation relevant to project output.
  • Evaluate compliance of the project output against a specification.
  • Present findings to an audience in a professional manner.
Courses related to your chosen strand:

Level 3

141.317 Engineering Practice (15 credits)

NZBED course code: DE3301
The aim is to develop an understanding of the skills involved in safely using engineering workshop machines and equipment and to develop an awareness of common manufacturing processes.

The learning outcomes on successful completion of this course are the student should be able to:

  • Operate safely in an engineering environment and explain the safety requirement required by the appropriate regulations.
  • Operate mechanical engineering equipment.

Level 4

243.422 Engineering CAD (15 credits)

NZBED course code: DE4301
Pre-requisite: 523.413 Technical Literacy

The aim is to provide students with the basic CAD draughting skills required for an engineering technician.

The learning outcomes on successful completion of this course are the student should be able to:

  • Demonstrate correct draughting practice and the use of different views and projections.
  • Produce working drawings including projections, perspective, sectional and assemble views.
  • Produce 3D models of parts and assemblies and output final drawings.
  • Explain the CAD/CAM manufacturing process.

243.423 Mechanics (15 credits)

NZBED course code: DE4302
Pre-requisite: 141.417 Engineering Fundamentals, 141.418 Engineering Mathematics 1, 523.413 Technical Literacy

The aim is to develop a sound understanding of the principles of mechanics.

The learning outcomes on successful completion of this course are the student should be able to:

  • Demonstrate the correct use of analysing forces and moments in mechanical systems.
  • Calculate indirect stresses (bending and torsion) in mechanical components and select appropriate sections from standard tables.
  • Demonstrate an understanding of energy in mechanical systems, including the Conservation of energy theory.
  • Demonstrate an understanding of the forces, moments and torques resulting from linear acceleration, rotational acceleration, and centripetal acceleration.

243.424 Material Properties (15 credits)

NZBED course code: DE4303
The aim is to develop an understanding of the characteristics and properties of common engineering materials relevant to mechanical and process engineering.

The learning outcomes on successful completion of this course are the student should be able to:

  • Demonstrate an understanding of basic materials science chemistry.
  • Describe and test the properties of materials used in mechanical engineering.
  • Describe and specify methods to change engineering material properties.
  • Demonstrate an understanding of selection criteria for engineering materials.
  • Explain the likely causes of material failure.

523.418 Electrical Principals (15 credits)

NZBED course code: DE4401
The aim is to provide the students with an understanding of general electrical and power circuit theory principles and skills required for subsequent courses.

The learning outcomes on successful completion of this course are the student should be able to:

  • Explain and apply the fundamental principles of DC theory.
  • Explain and apply the fundamental principles of AC theory.
  • Explain and apply the fundamental principles of the basic three-phase theory.
  • Demonstrate the use of electrical measuring equipment.

Level 5

243.516 Strength of Materials 1 (15 credits)

NZBED course code: DE5302
Pre-requisite: 243.423 Mechanics

The aim is to develop an understanding of the essential elements in the strengths of materials.

The learning outcomes on successful completion of this course are the student should be able to:

  • Demonstrate an understanding of complex states of stress and the effects of dynamic loadings on a mechanical system.
  • Design jointing systems.
  • Demonstrate an understanding of beam failure modes and calculate deflections and shear stresses.
  • Calculate failure loads for concentrically loaded columns.

243.517 Manufacturing Processes (15 credits)

NZBED course code: DE5303
Pre-requisite: 243.424 Material Properties

The aim is to apply engineering knowledge to common manufacturing processes.

The learning outcomes on successful completion of this course are the student should be able to:

  • Select mechanical engineering manufacturing processes for products.
  • Select equipment and tooling to support mech. engineering manufacturing processes.
  • Assess an existing manufacturing process.

251.502 Thermodynamics & Heat Transfer (15 credits)

NZBED course code: DE5301
Pre-requisite: 141.417 Engineering Fundamentals, 141.418 Engineering Mathematics 1, 523.413 Technical Literacy

The aim is to develop a sound basic knowledge of thermodynamic principles - including gas laws, measurement of pressure and temperature, mass and energy conservation and energy sources in the New Zealand context - and the mechanisms of heat transfer including the uses of heat exchangers.

The learning outcomes on successful completion of this course are the student should be able to:

  • Demonstrate an understanding of thermodynamics principals for temperature, pressure, gas laws, thermal expansion, conservation of energy, change of phase, heating and thermal efficiency.
  • Apply thermodynamics principals to practical applications for refrigeration, heat exchanger, and solar collectors.
  • Calculate rates of heat transfer through multiple layers and combined modes.
  • Evaluate and compare the sources of energy in NZ including sustainability concepts.

Level 6

243.628 Mechanics of Machines (15 credits)

NZBED course code: DE6302
Pre-requisite: 243.516 Strength of Materials 1

The aim is to develop an understanding to solve complex problems involved with machinery dynamics such as power transmission, balancing, noise, and lubrication systems.

The learning outcomes on successful completion of this course are the student should be able to:

  • Identify dynamic loads in rotational equipment and explain the need for balance and how it is achieved.
  • Analyse mechanical systems to determine natural frequencies and the effects of resonance.
  • Explain acoustic term and solve for noise level and noise attenuation in an engineering environment.
  • Explain gear terminology. Solve velocity ratios and forces in gear systems.
  • Analyse power transmission components for life, force and application.

251.601 Advanced Thermodynamics (15 credits)

NZBED course code: DE6309
Pre-requisite: 251.502 Thermodynamics & Heat Transfer

The aim is to develop a sound understanding of the theory and application of thermodynamics, especially as related to heat engines, air compressors, nozzles, steam plant, and energy conservation plant/principles.

The learning outcomes on successful completion of this course are the student should be able to:

  • Demonstrate an understanding of the laws of thermodynamics.
  • Analyse common engine cycles and explain their operation and their effects on the environment.
  • Demonstrate an understanding of air compressors, nozzles, Steam plant, energy conservation plant/principles.
  • Analyse refrigeration/heat pump cycles.
  • Outline HVAC system operation and equipment and determine heating, cooling and dehumidifying loads.
  • Determine air/fuel ratios and exhaust analysis for common fuels and describe their handling requirements.

271.601 Fluid Mechanics (15 credits)

NZBED course code: DE6301
Pre-requisite: 141.417 Engineering Fundamentals, 141.418 Engineering Mathematics 1, 243.423 Mechanics

The aim is to understand and apply the principles of fluid statics and dynamics to common engineering problems.

The learning outcomes on successful completion of this course are the student should be able to:

  • Demonstrate an understanding of the basic principles of fluid mechanics.
  • Describe and assess hydrostatic fluid applications.
  • Describe and assess hydrodynamic fluid applications.
  • Demonstrate an understanding of the requirements for fluid machinery.
  • Produce fluid power systems (pneumatic and hydraulic) to meet operational requirements.

Key dates

To find the start date of your programme intake listed above, please view the engineering calendar.

Further training or study

Successful completion of your first semester in the New Zealand Diploma of Engineering (Level 6) with a required grade point average of B can provide direct entry to Bachelor of Engineering Technology (Level 7).

Key information for students

New Zealand Diploma in Engineering

Entry Requirements
Minimum requirements [?] Any minimum or preferred criteria for entry to this qualification. For entry to this programme, applicants are required to have: NCEA Level 2 including a minimum of 10 literacy credits at Level 1 or above (for those who achieved NCEA Level 2 before 2013), and A minimum total of 48 credits at level 2 in four subjects including at least 12 credits in mathematics (preferably achievement standards in algebra , calculus or trigonometry) , or equivalent qualifications (e.g. International Baccalaureate or Cambridge) , or equivalent credits from appropriate trades training and/or demonstrated skills and experience In addition to meeting the minimum entry criteria, those applicants for whom English is a second language (including International students) must meet the IELTS overall language requirement: Overall Band Score (Academic) of 6.0 IELTS, with no individual score less than 5.5, or equivalent.
Detailed requirements [?] Click here for more information on any additional entry criteria for this qualification. More information about entry to this qualification
Duration [?] The minimum amount of time it takes to complete this qualification. 2 Years
Tuition Fees Annual Total Qualification
Student fees [?] Annual:
The annual tuition fees payable by a student to study this qualification, additional to what the government contributes. (This is an average based on recent course enrolments. Your fees may differ depending on your course selection.)

Total Qualification:
The total tuition fees payable by a student to study this qualification, additional to what the government contributes. (This is an average based on recent course enrolments. Your fees may differ depending on your course selection.)
$6,754 $13,508
Government tuition subsidy [?] Annual:
The average annual amount paid by government towards the tuition fees for this qualification, additional to what the student pays. (This is an estimate based on the fees subsidy paid by government to tertiary providers last year.)

Total Qualification:
The average total amount paid by government towards the tuition fees for this qualification, additional to what the student pays. (This is an estimate based on the fees subsidy paid by government to tertiary providers last year.)
$11,768 $23,536
Total [?] Annual:
The combined total of the annual amount paid by both the student and government towards the tuition fees for this qualification. (This is an estimate based on recent course enrolments and the fees subsidy paid by government to tertiary providers last year.)

Total Qualification:
The combined total of the amount paid by both the student and government towards the total tuition fees for this qualification. (This is an estimate based on recent course enrolments and the fees subsidy paid by government to tertiary providers last year.)
$18,522 $37,045
Compulsory student services fee
Student loan information [?] Click here for more information on loans and allowances. StudyLink
Student Success
Successful course completions [?] The percentage of students who successfully completed courses towards this qualification last year. 64%
National Graduate Outcomes (3 years after completion)
Median earnings [?] The median represents the middle value for all earnings of young graduates who completed a qualification in this subject area at this level nationally. Earnings do not relate specifically to graduates who completed qualifications at this TEO. $43,011
Earnings range [?] The range shows the upper and lower quartile values representing the one quarter point and three quarters point for all earnings of young graduates who completed qualifications in this subject area. Half of all graduates had earnings within this range. $33,003 - $52,554
In employment [?] This percentage relates to young graduates who completed a qualification in this subject area at this level nationally and does not relate specifically to graduates who completed qualifications at this TEO. 64%
In further study [?] This percentage relates to young graduates who completed a qualification in this subject area at this level nationally and does not relate specifically to graduates who completed qualifications at this TEO. 24%
On a benefit [?] This percentage relates to young graduates who completed a qualification in this subject area at this level nationally and does not relate specifically to graduates who completed qualifications at this TEO. 6%
Note: all KIS information is the most recent available relating to domestic students only.
Click here for more information about the Key Information for Students

Information is correct as at October 2019. Programme fees are based on a full-time student and may vary depending on your final selection of courses that make up your programme. To provide you with an indication of costs, the approximate fees quoted in this publication are based on the indicative 2020 fee structure. The indicative programme fees for 2020 do not include the Compulsory Student Services Fee (CSSF). The CSSF is an additional levy to your 2020 programme or course fees. Further information about the CSSF can be found here www.manukau.ac.nz/cssf. Programmes stated as eligible for free study in 2020 are based on the 2019 fee structure and subject to funding confirmation for 2020. All fees are in New Zealand Dollars. You will be advised of the current fees at the time of enrolment. All courses and programmes will proceed subject to numbers and academic approval. Manukau Institute of Technology is accredited under the provisions of the Education Act 1989. International students must study in class and will not be able to enrol for online study options.

^Free study for this qualification may be available to you under the government’s Targeted Training and Apprenticeships Fund (TTAF). Visit https://www.tec.govt.nz/funding/funding-and-performance/funding/fund-finder/targeted-training-and-apprenticeship-fund/faqs-for-learners/ for eligibility criteria and more information. Students must be eligible to study as a domestic student and meet any other entry criteria as required. Some costs may also apply. Free study is subject to funding confirmation.